# 鋰離子電池高值化 循環利用技術

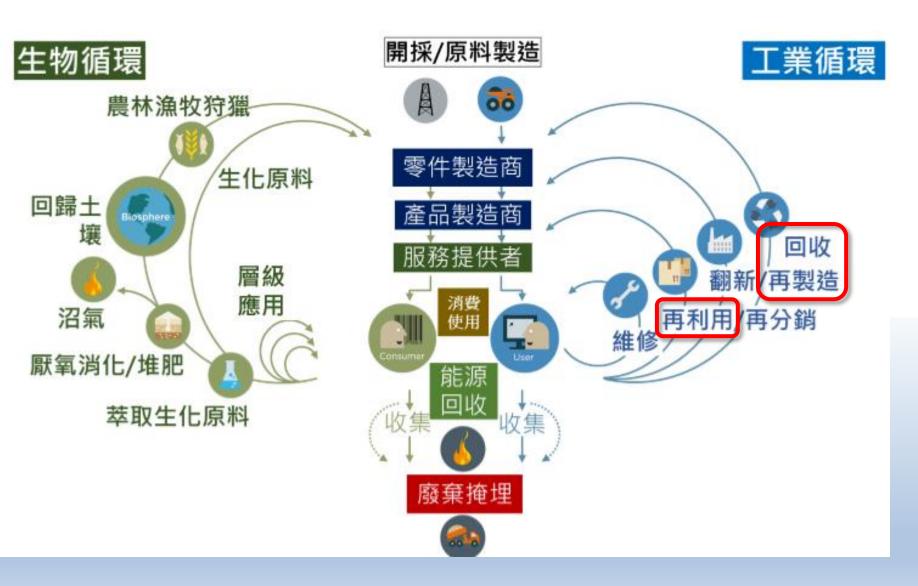


簡報人:張添晉 教授

日期:107年10月 23 日



# 大綱


- 一背景說明及分析
- 二電池回收必要性
- 三電池再利用模式
- 四 國內外處理技術

# 

二電池回收必要性

三電池再利用模式

四 國內外處理技術



### ■循環供應:

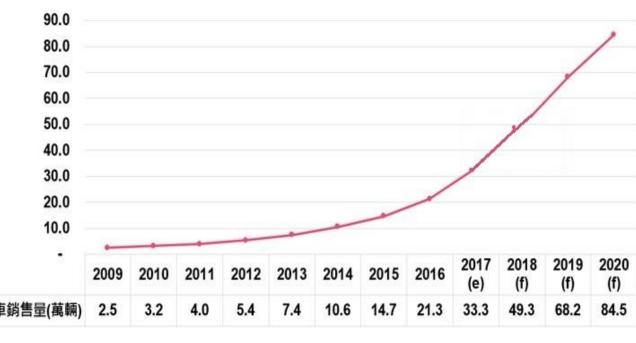
提供可再生、可回收、 可生物分解的資源

### ■資源回復:

把廢棄物轉換成資源

### ■延長產品與資產壽命:

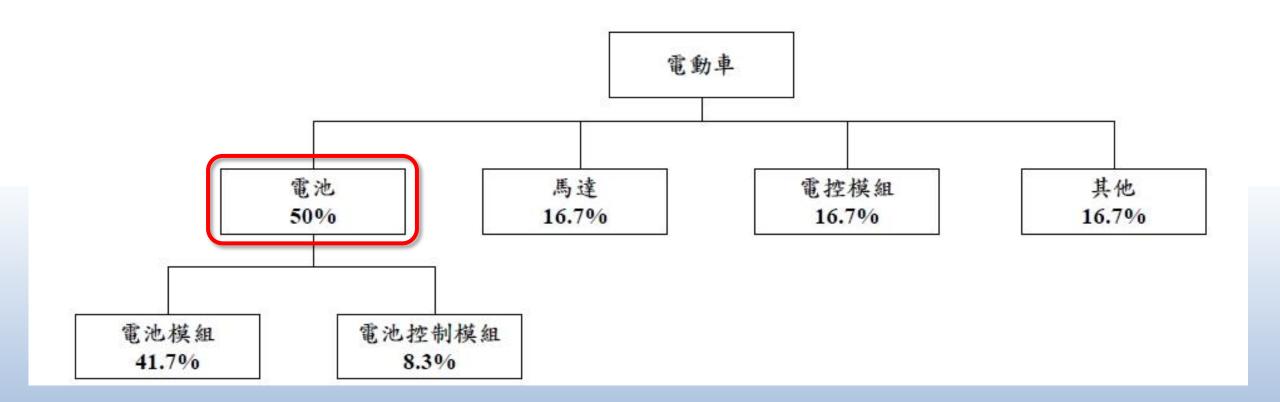
透過修理、升級、再製造、再行銷來維持產品 的經濟效能


### ■共享平台:

分享閒置的空間與資源

### ■產品即服務:

以租代買


# 政府誓言將在2030年 全面禁售燃油機車



經濟部長沈榮津日前召集台灣主要機車業者, 傳達2030年全面禁售燃油機車的決心,並 拋出將逐年限縮燃油機車發牌數構想。經部 評估,未來電動機車業產值可達378億元, 業者亦樂觀看待台灣每年電動機車銷售上看 500億元。



◆電動車的成本結構



### ◆ 鋰電池是現在最好的電池種類

- 1. **能量較高**:具有高儲存能量密度,目前已達到460-600Wh/kg,是鉛酸電池的約6-7倍
- 2. 使用壽命長:使用壽命可達到6年以上,磷酸亞鐵鋰為正極的電池1C(100%DOD)充放電,有可以使用10,000次的記錄
- 4. 具備高功率承受力:其中電動汽車用的磷酸亞鐵鋰鋰離子電池可以達到15-30C充放電的能力,便於高強度的啟動加速
- 5. 自放電率很低:這是該電池最突出的優越性之一,目前一般可做到1%/月以下,不到鎳氫電池的1/20
- 6. 重量輕:相同體積下重量約為鉛酸產品的1/5-6
- 7. **高低溫適應性強**:可以在-20℃--60℃的環境下使用,經過工藝上的處理,可以在-45℃環境下使用
- 8. 綠色環保:不論生產、使用和報廢,都不含有、也不產生任何鉛、汞、鎘等有毒有害重金屬元素和物質

| ı | 電池種類 | 鋰鈷                               | 鋰錳                          | 鋰鎳鈷錳                                 | 磷酸鐵鋰                                     |
|---|------|----------------------------------|-----------------------------|--------------------------------------|------------------------------------------|
|   | 優點   | 能量密度較高、放電電壓高且穩定、<br>電極材料裝備容易。    | 安全性高、成本低、大功<br>率放電特性佳。      | 安全性較高、添加錳鎳後<br>電容量獲得提升、電極材<br>料製備容易。 | 橄欖石化學結構穩定性佳、<br>安全性高、充電快速、循<br>環壽命長、成本低。 |
|   | 缺黑占  | 鋰鈷氧物結構定性差、安全性差、<br>鈷材料成本高、循環壽命短。 | 循環壽命較短、高溫造成<br>錳離子解離使電容量衰退。 | 循環壽命短、鈷材料成本<br>高。                    | 材料導電性偏低、製程難<br>度高、專利爭議。 <b>7</b>         |

### ▶ 相關產品進口量

|              | 中文貨名      | 進口重量(kg)   | 價值(千元)     |
|--------------|-----------|------------|------------|
|              | 鋰原電池及原電池組 | 1,106,928  | 1,970,884  |
| 103-<br>105年 | 鋰離子蓄電池    | 5,023,489  | 8,271,978  |
|              | 鋰蓄電池      | 7,111,249  | 16,004,532 |
|              | 總計        | 13,241,666 | 26,247,394 |

### ▶ 相關產品出口量

|              | 中文貨名      | 出口重量(kg)  | 價值(千元)     |
|--------------|-----------|-----------|------------|
|              | 鋰原電池及原電池組 | 278,140   | 952,120    |
| 103-<br>105年 | 鋰離子蓄電池    | 5,503,185 | 10,992,826 |
|              | 鋰蓄電池      | 1,858,158 | 4,930,292  |
|              | 總計        | 7,639,483 | 16,875,238 |

### > 台灣鋰電池製造量

| 鋰電池製造量(kg) |         |           |         |  |  |
|------------|---------|-----------|---------|--|--|
|            | 一次鋰電池   | 二次鋰電池     | 鈕扣型鋰電池  |  |  |
| 103        | 31,577  | 2,223,039 | 120,471 |  |  |
| 104        | 37,464  | 2,204,035 | 106,968 |  |  |
| 105        | 35,339  | 2,140,414 | 97,253  |  |  |
| 總計         | 104,380 | 6,567,488 | 324,692 |  |  |

### > 筒形鋰電池金屬比率

| 金屬 | 重量百分比(%) |
|----|----------|
| 鋰  | 10       |
| 鈷  | 11       |
| 鋁  | 14.3     |
| 銅  | 9.75     |
| 鎳  | 14.95    |

## 背景說明及分析

160

2018

鋰電池

回

收市場預估(億元)

1200

1000

800

600

400

200

32.5

2016

#### 各種移動式電源產品產品之電容量比較表



裝備1000kWh-4000kWh 電池組



X125000~500000 個

電動巴士

電動車EV

混合電動車 HEV、高爾夫

球車、UPS等

筆記型電腦、

平板電腦等

大型儲電

系統

1023

2022

506

2020



裝備150kWh-200kWh 電池組

裝備24~40kWh電池組

裝備40~60Wh電池組

18650 電池

18650 電池

X 19000~25000

18650 電池



X 3000~5000 個





18650 電池

X 120~360 個





18650 電池



X6個



18650 電池

9

4Wh/cell 一隻手機使用量=1cell

X 0.5 個

1個18650電池約3.7V\*2.2Ah=8Wh

行動電話、相 機等

項目 補貼費率 回收價格 一次鋰電池 139 元/公斤 18.75~25 元/公斤 廢乾電池 二次鋰電池 55 元/公斤 45~50元/公斤

### 鋰電池未來趨勢



為了因應全球節能減碳環保趨勢,汽機車產業正逐漸轉型。從環境及能源的角度來看相對於傳統內燃機引擎車輛,電動車的能源轉換效率高及其二氧化碳排放量較少,使電動車被公認為未來最有發展潛力的綠色車輛之一。



太陽光電模組由於利用太陽光發電有時辰的限制,因此發電與儲能需互相搭配才能有效利用太陽能。由於鋰離子電池具高能量密度、高輸出功率與無記憶效應等優點,成為儲能市場近年來最熱門趨勢。



臺灣稀有資源少,需透過「城市礦山」的方式將廢棄物資源化。 以現今趨勢談論資源永續利用,首先應推動將廢棄物資源化以達到促進產業永續發展。

一 背景說明及分析

二電池回收必要性

三電池再利用模式

四 國內外處理技術

# 二、電池回收之必要性

◆ 相關政策

1

配合歐盟各國所實施之新電池指令,規定生產者需負擔使用過後之電池回收、處理及循環的成本,降低整體碳排量;落實台灣政府近期所推動的5+2方案中的綠 能科技與循環經濟概念。

2

歐盟各國自2008年9月實施新電池指令,規定生產者需負擔使用過後之電池回收、 處理及循環的成本;而「碳金融」與「碳有價化」更是巴黎氣候大會的兩大焦點。

面對每年<u>逾十億顆鋰離子電池的廢棄量</u>和電池廠產生日以噸計之廢料廢棄物,如不妥善回收處理,將造成環境生態的永久污染以及傷害。

# 二、電池回收之必要性

### ◆ 鋰電池潛在污染

| 材料種類 | 頁                                                              | 材料名稱與主要化學特性                               | 潛在污染           |
|------|----------------------------------------------------------------|-------------------------------------------|----------------|
| 正極材料 | 4                                                              | 鋰鈷酸:與水、酸或氧化劑發生強烈反應,燃燒或受熱分解產生有毒鋰,<br>鈷氧化物。 | 重金屬鈷污染使環境pH升高。 |
| 負極材料 | <b>負極材料</b> 碳材:粉塵與空氣的混合物遇熱源或火源可發生爆炸, 可與強氧化劑 發生反應,燃燒產生CO與CO2氣體。 |                                           | 粉塵污染           |
| 電解質溶 | 劑                                                              | 碳酸乙烯酯:與酸、鹼、強氧化劑,還原劑發生反應,水解產物產生醛   和酸。     | 醛,有機酸污染。       |
| 電解質  | 電解質 六氟磷酸鋰:具有強腐蝕性,與水可分解產生 HF與強氧化劑發生反應,<br>燃燒產生 P2O5等有毒物質        |                                           | 氟污染使環境pH升高。    |
| 隔離膜  | 隔離膜 聚丙烯微孔膜:燃燒可產生CO,醛,有機酸等。                                     |                                           | 有機物污染          |
| 黏合劑  |                                                                | 聚氟偏乙烯:可與氟、發煙硫酸、強鹼、鹼金屬發生作用,受熱分解產生HF。       | 氟污染            |

- 一 背景說明及分析
- 二電池回收必要性

# 三電池再利用模式

四 國內外處理技術

## 三、電池再利用模式



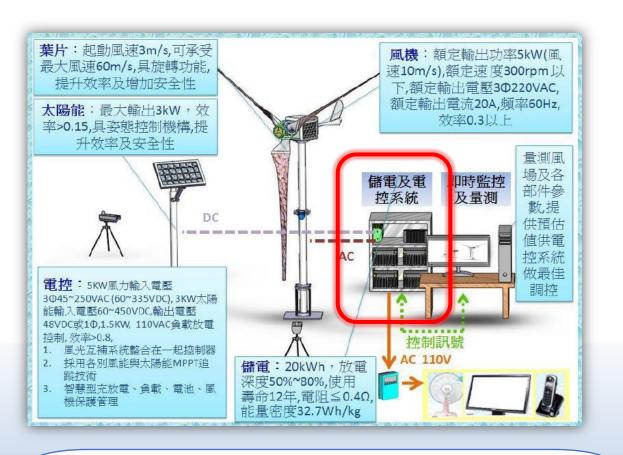
### 維修翻新

對電池進行充放電試驗和相關信息的讀取,如電池整體狀況良好,只是個別單體到達使用壽命,則對這些單體更換後重新組裝電池包,可以作為置換電池重新應用。



### 層級利用

通過檢測,如果回收電池還剩餘規定容量,則可以進行梯次利用,應用於分布式**儲能電池系統**,用來平抑、穩定風能、太陽能等間歇式可再生能量發電的輸出功率;或者應用於微電網,實施削峰填谷,減輕用電負荷供需矛盾。




### 循環再生

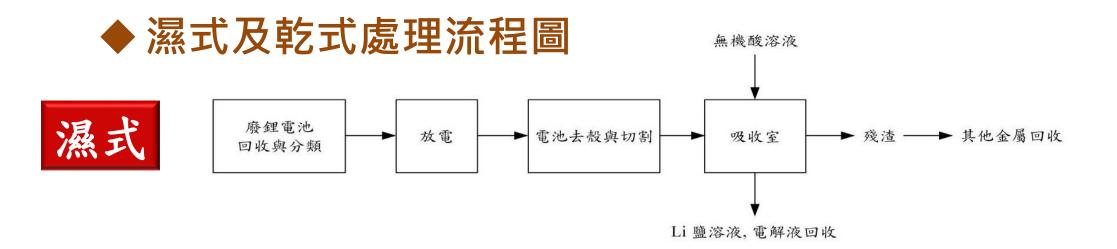
對於完全喪失再利用價值的電池,則對電池進行拆解和化學處理,完全回收鋰、鈷、鎳等金屬,用於生產新的電池,實現循環利用。

商人願意以每公斤4美元的價格收購還能使用的舊鋰電池,而當作廢棄物回收的電池每公斤僅1.5美元。

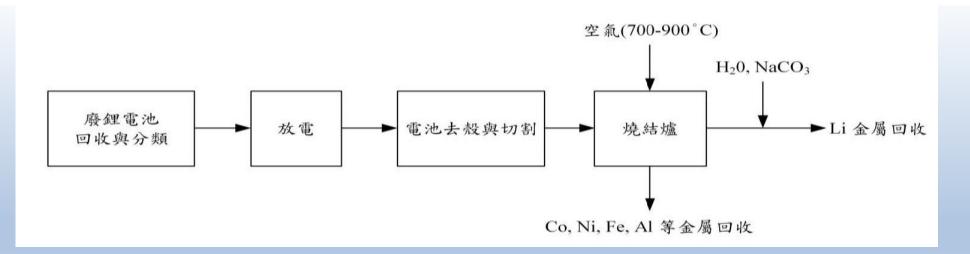
# 三、電池再利用模式






電動車電池在使用十年後, 貯電能力至少還剩70%, 利用使用過的電池來儲存風力渦輪所產生的電力, 或 是利用這些舊鋰電池來代替碳酸電池, 儲存備用電力。 「再利用」電池貯存每度電的成本僅49美元, 而新 電池要300美元。 2015 年,豐田廢舊電池用於黃石國家公園設施儲能供電,重新設計了儲能電池管理系統,208 個電池可存儲 85KWh 電能,將電池的使用壽命延長了兩倍。

- 一 背景說明及分析
- 二電池回收必要性
- 三電池再利用模式


### ◆方法及過程

現今廢鋰電池回收技術分<mark>乾式處理(火法冶煉)與濕式處理(濕法冶金)</mark> 兩大類,主要對正極極板中鋰、鈷、鎳、錳等金屬元素的萃取提煉,而非以金屬氧化物回收再利用為考量。









### ◆回收方法優劣分析

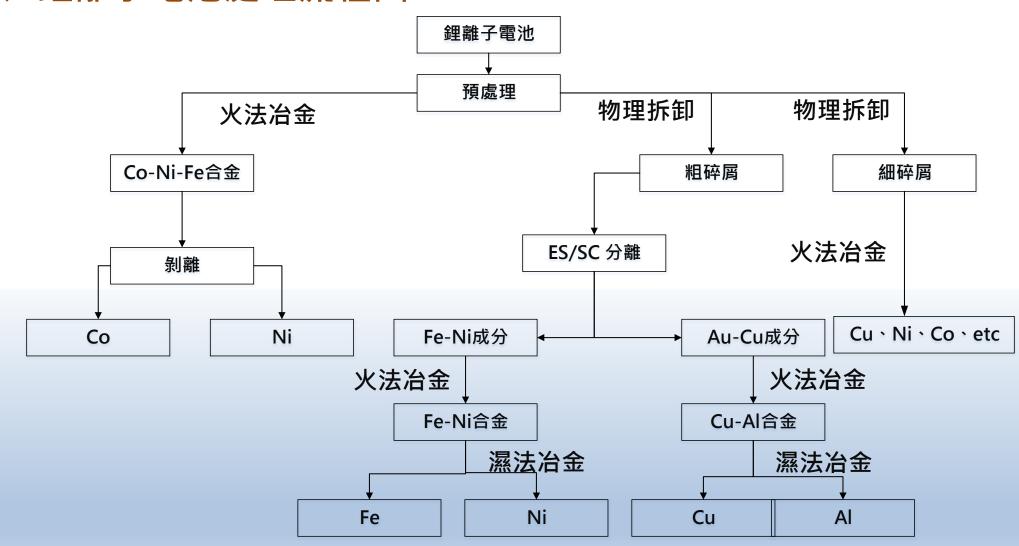
|   |    | 溼式冶金法                                                              | 乾式冶金法                                                                 |
|---|----|--------------------------------------------------------------------|-----------------------------------------------------------------------|
| 優 | 黑占 | 1. 能源消耗較少<br>2. 投資成本低<br>3. 可從陰極、陽極材料和殼體金屬回收廢物<br>的不同組分,可以分別在市場上銷售 | 1. 為開發成熟之技術<br>2. 從塑膠外殼及其他有機成分都可能回收<br>3. 從爐渣中提取稀土元素與從原生礦石的處<br>理步驟相同 |
| 缺 | 點  | 1. 產生之廢棄物需再進行處理<br>2. 消耗大量化學品<br>3. 需要許多人工拆卸電池和不同組件的分離<br>操作       | 1. 能源消耗大<br>2. 爐的高投資成本<br>3. 稀土元素需要從爐渣中提取<br>4. 得到的稀土元素混合物,需再進一步分離    |

### 國際上廢鋰離子電池處理方式

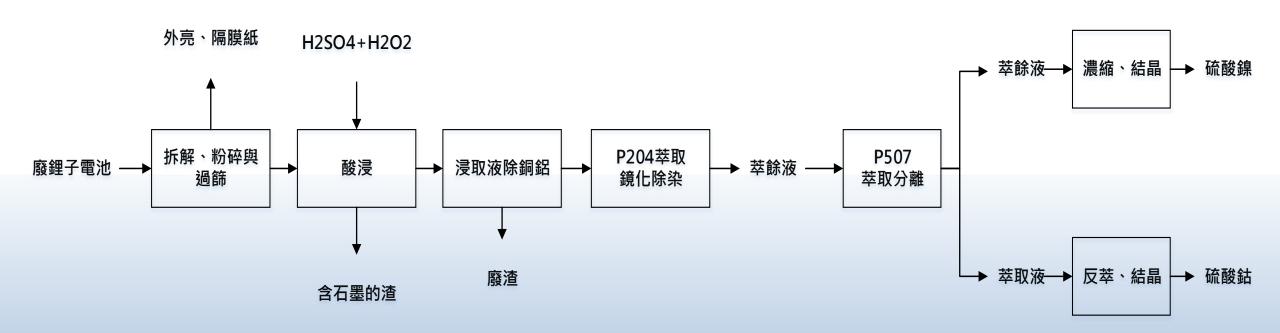
預處理(Pretreatment),包括分選、放電、破裂、剝殼等程序,之後分別以三種作法 回收處理:



利用火法冶煉(Pyrometallurgy),將Co-Ni-Fe合金或金屬氧化物通以還原氣體於高溫環境中燒結成純金屬混合物,再萃取出純金屬。



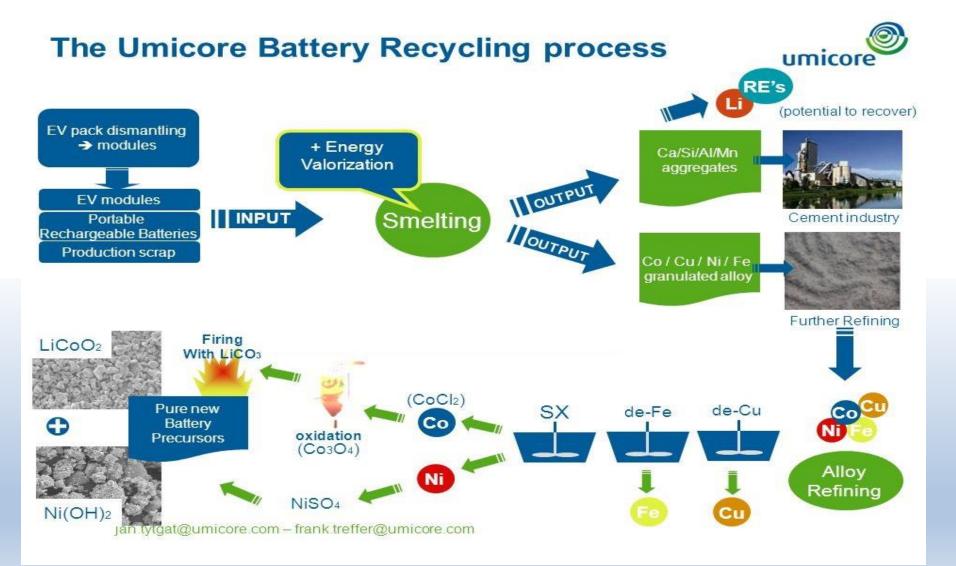

先以機械剝離拆解電池,經過粗粉碎後,利用電解分離(Electrolysis separation),依還原電位差異,分為Al-Cu/Fe-Ni,再分別利用火法冶煉形成合金,最後分別以濕式冶金(Hydrometallurgy)法分離成純金屬或化合物




以機械剝離拆解電池後,直接進行細粉碎,再利用火法冶煉(Pyrometallurgy) 燒結成純金屬混合物(Cu、Ni、Co、etc)

◆ 鋰離子電池處理流程圖




### ◆ 中國目前回收技術拆解圖



◆ 日本電池回收現況



◆ 鋰材料大廠比利時Umicore的處理方式



### ◆ 各國鋰電池回收技術整理

| 國家  | 公司                                  | 技術                             | 主要產物                                                  |
|-----|-------------------------------------|--------------------------------|-------------------------------------------------------|
| 比利時 | Umicore                             | Val'eas法得到鎳鈷合金→酸浸→濕法冶金         | CoCl <sub>2</sub> · NiSO <sub>4</sub>                 |
| 日本  | Sumitomo-Sony                       | 鍛燒除去電解液及塑膠→火法回收Co/Ni/Fe→濕法回收Co | CoO                                                   |
| 德國  | 1.Accurec GmbH<br>2.LithoRec proces | 機械破碎→濕法冶金                      | Co合金、Li <sub>2</sub> CO <sub>3</sub>                  |
| 法國  | SNAM                                | │<br>│火法冶煉、磁分離得有價金屬→濕法冶金<br>│  | Co/Ni/Cu合金、鋰鹽                                         |
| 法國  | Recupyl                             | 機械破碎與濕法回收                      | Co(OH) <sub>2</sub> \ Li <sub>3</sub> PO <sub>4</sub> |
| 瑞士  | Glencore plc.                       | 火法與濕法冶金                        | Co/Ni/Cu合金                                            |
| 加拿大 | Тохсо                               | 破碎篩選→酸浸與沉澱(濕法)                 | CoO · Li <sub>2</sub> CO <sub>3</sub>                 |
| 中國  | 格林美/邦普                              | 濕法回收為主:酸浸後純化                   | Co/Ni/Cu合金、Co <sub>3</sub> O <sub>4</sub>             |

# 感謝指教